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A B S T R A C T  

Let ,~ > w be a regular cardinal and A > ,~ a cardinal. We show that "P~A 
splits into A ~ stationary sets. 

0. I n t r o d u c t i o n  

Let ,~ > w be a regular cardinal and A > ~ a cardinal. Solovay's classical result 

for ~ [So] led Menas [Me] to conjecture tha t  a s ta t ionary subset of P~A would 

split into A <~ s ta t ionary  sets. Unfor tunately  his conjecture fails when 2 <~ > ,~+: 

While P ~ +  carries a s ta t ionary  set of size ~+ (see [BT]), the conjecture implies 

tha t  the size is (~+)<~ as well. 

W h a t  about  split t ing a s ta t ionary set S into min{IS A C I : C is club} many  

sets? Gitik 's  answer [G] was again negative: Relative to supercompactness ,  it is 

consistent tha t  some s ta t ionary  subset of P ~ +  splits into at  most  ~ s ta t ionary  

sets. 

Now it seems natural  to ask the same question as above for a canonical sta- 

t ionary  set. Let us concentrate  on the case where the canonical set is P~A itself. 

W h e n  ~ -- wl, we have a satisfactory answer by the works of Baumgar tne r  

Taylor [ST] (the case A < 2 ~) and Donde r -Mate t  [DM] (otherwise): ~ , A  splits 

into A ~ s ta t ionary  sets. In fact the latter proved the d iamond principle for P~A 

when A > 2<% 
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In this paper  we are mainly concerned with the general type of result as follows 

(see [Ka]): T'~A splits into A stationary sets. As suggested above, we should 

first measure the minimum size of a club subset of P~A. Elaborating his earlier 

result [BT], Baumgartner  [B] has already shown that  it is at least A' .  This and 

the following result of Magidor [Magi imply that  A" is the critical number for 

our specific splitting problem: If there is no Wl-Erd6s cardinal in the Dodd-  

Jensen core model, P,~A carries a club set of size A" when cf A > n, and of size 

max{A' ,  A + } otherwise. 

Unifying three of the results above, we establish the desired splitting: 

THEOREM 1: 7)HA splits into A" s tat ionary sets. 

We also realize the splitting suggested in the latter case of Magidor's theorem: 

THEOREM 2: P~A splits into A + stat ionary sets when cf A < n. 

1. P r e l i m i n a r i e s  

Our notation should be standard. Kanamori 's  book [Ka] is an excellent source 

for background material.  We reserve a for a regular cardinal > w, A for a cardinal 

> n and #, u for a cardinal _> w. When # < a is regular, S~ (resp. S <~, S >~') 

denotes the set of limit ordinals < n of cofinality # (resp. < #, > #). For a set 

X of ordinals let l i m X  be the set {3' < s u p X  : sup(X M 3') = 3' > 0} of limit 

points of X and clI X the closure of X under f : A <" --+ P~A, i.e. the minimal 

set Y D X with U f " Y < "  c Y. Unless otherwise stated, we understand that  a 

set of ordinals is listed in increasing order and a splitting of a stat ionary set is 

mutually disjoint. 

Thoughout  the paper we freely use Solovay's theorem [So] mentioned earlier: 

THEOREM: A stat ionary subset  o f  n splits into n s tat ionary sets. 

We need a version of Shelah's club guessing sequence (see [Ko]). Let us sketch 

a proof due to Hirata [HI: 

THEOREM: Let  # < n < A be all regular and S c S~ MllmD~- stationary. Then  

there is a sequence (a v : 3" E S) such that  c.~ C S >~ is unbounded in 3" and of  

order type  # for any 3" c S and {3" E S : c 7 c C}  is s ta t ionary for any club set 

C C A .  

Proof: First for ~ E lim)~ fix an unbounded set d~ C ~ of order type cf ~. For 

D = U~<" xTDn -- {0}, where x ° is defined 3' E S and a club set D C lim A set x7 7,,~ 

inductively by 

x D = {sup(D N a )  : a C d.r} 3',0 
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and 

X%n+l 

D C D since D is closed, and o IxT,n] < ~ by induction on n < co. First Note tha t  x~ 

D C C} is s ta t ionary for any club we find a club set D C ,~ such tha t  {3` E S : x~ 

set C C A. 

Otherwise we would have inductively a descending sequence (C~ : ~ < ~) of 

club subsets of lim ,~ such that  C~+~ fi {3` E S : x C~ c C~+1} = 0 for any ~ < t~. 

F i x 7  E S N N ~ < ~ C ~ .  Then  we have inductively { ~  : n < co} C ~ such tha t  
C~ C~ 

xT,,~ = xT,,~ tor any ~n ~ ~ < ~ since the map ~ ~-~ sup(C~ M a)  is decreasing 

for any a < A and xT,~ I < t~ by the note above. Set ~ = sup,~<~ ~,~ < ~. Then  

x C~ = x c~+~ C C~+1 by the note above. This contradicts  

C~+1 N {3` E S:  x c~ C C~+,} = O. 

D C limD} Now fix a club set D C A as above. Then  S* = {3' E S N lim D : x~ 

D l imx D C S i- , is s ta t ionary  by the claim above. Fix 3' E S*. We have x 7 

D _ l imx  D is since /3 E xDT,'~ N S <~ implies/3 E l imxDn+l  by /3  E l imD.  Also x 7 

unbounded  in 7, since x D is unbounded  in "7 by 7 E lim D. 7,0 
Finally we get the desired sequence by taking an unbounded  subset of 

x7 D _ lim x~ 0 of order type  # as c 7 for 7 E S*. I 

In fact we use only the sequence of the form (c 7 : 3  ̀E S~} and do not appeal  

to the clause c~ C S i- . The second result we quote from Shelah's pcf theory  is 

a scale on a singular cardinal [Sh] (see also [BMag]): 

THEOREM: Let A be singular. Then there are an unbounded set {A~ : ~ < cf,~} C 

A of regular cardinals and {f7 : 3` < A+} c I]~-<cfA ~ such that f z  <-* f7 for any 

D < "7 < A + and for any g E 1-I~<cf~ At there is V < A+ with g <* fT" 

Here <* denotes the eventual dominance:  f <* g iff {~ < cf,~: f(~) < g(~)} 

is cobounded.  The  later development of the theory as presented in [Ko] yields a 

more t ransparent  proof  of this deep result. 

2. M a i n  t h e o r e m s  

This section is devoted to establishing Theorems 1 and 2. 

Our  proof  of Theorem 1 consists of two major  parts. For the first par t  we are 

s trongly indebted to Todor~evid [T2], who reproved Gitik 's  answer [G] to Abra-  

ham's  question [AS] and claimed tha t  his me thod  would yield the B a u m g a r t n e r -  

Taylor result as well via the following: Let (c~ : ~, E S~2 ) be a club guessing 
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w U = { n  < sequence with c-~ = {%~ : n < w}. Then  {x E 7)~1w2 : 37 E S~2 (s p x "y A 

w: x n (%+1 -- 7,~) # O} = r)} is s ta t ionary for any r e [a;]% 

Let A be regular. We endow [h] <~ with the tree ordering < -- {(a, b) : a is an 

initial segment of b}. Let T be a subtree of [A] <~, i.e. a subset of [A] <~ closed 

under  initial segments. Set [T] = {B e [A] ~ : V/3 • B ( B  A Z • T)}, the set of 

infinite branches through T, and T a = {b • [A] <~ : a < a U b • T},  the tree 

above a • [A] <~. We call T ~ 0 s ta t ionary if the set of immediate  successors of 

a G T,  SUCT(a) = {a  < A:  a < a U {a} • T} is always stat ionary,  and g: T --+ A 

regressive when g(a) ~_ g(b) • min b U {0} for any a _~ b • T. 

Let us s tar t  with a tree version of the regressive function lemma: 

LEMMA: Let g : T -+ A be regressive with T a stationary subtree of  [S~] <~. 

Then for some stationary subtree T* o f T ,  g"T* is bounded in A. 

Proof: For 7 < A set T 7 = {a • T : g(a) < 7}, a subtree of T by order 

preservation of g. First  we find "7 < A with [TT] N [C] ~ # 0 for any club set 

CcA. 

Suppose to the contrary tha t  for 7 < )' we have a club set 0 7 C A with 

[T~] N [C~] ~ = 0. Take inductively B • IT] M [A7<~C7] ~ by the s ta t ionar i ty  of 

T. Take a < min B with B • [T~] by cf rain B = n > w and the regressiveness of 

g. Then  B E [C~] ~ by B • [AT<xC~]% This contradicts [T~] n [C~] ~ = 0 by the 

choice of Ca. 

Fix y < A as above. Set T* = {a • T~: Vb <_ a r c  C A club ([T-rblN [C] ~ # O)}, 

a subtree of T. Note tha t  0 • T* by the choice of % We claim tha t  T* is 

s ta t ionary  as desired. 

Suppose to the contrary tha t  D M SUCT* (a) = 0 for some a • T* and some club 

set D C A. Then  for a • D we have a club set C~ C A with [T~ au{~}] N [C~] ~ = 0 

by a • T* and a U {a} ¢ T*. Thus  C = D N A~eDCc~ is club in A. Take B • 

= T a [T-y ~] n IV] ~ by a • T*. Set /3 min B. Then  B - {t3} • [T7 ~u{~}] by B • [ 7 ], 

and B - {~3} • [C~] ~ by B • [C]% This contradicts [T~ ~u{z}] N [C~] ~ = 0 by 

E D and the choice of C z. I 

For the following lemma we fix a club guessing sequence (c7 : 7 • S~} with 

c-y = {%~ : n < w}. 

MAIN LEMMA 1: Let S,~ C S~ be stationary for n < w. Then 

{x C P~A:  37 E S ~ ( s u p x  = ~, AVn < w(min(x - 2¢n) C Sn))} 

is stationary. 
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Proof." Fix f :  A <~ --+ P~A. Set 

T = { a :  Vn < lal(the n th  element of a is in Sn)}, 

a s ta t ionary  subtree of [S~,] <~°. We build inductively a s ta t ionary  subtree Tn 

of T and hn: Tn N [A] n --+ A so tha t  Tn+l C Tn, Tn+l N [A] n = Tn n [A] n and 

cls(a U B) O m i n B  C hn(a) for any a E T,~+I N [A] n and B E [Tn+la]. 

First  set To = T. Next suppose tha t  Tn is defined. Fix a E Tn N [A]n. Then  

the map  ga : b ~-~ sup(cl$(a U b) N minb) is regressive on Tn a by c f m i n b  = ~;. 

By the lemma above we have a s ta t ionary subtree Ta of Tn ~ and hn(a) < A with 

g~"Ta C hn(a). Then  Tn+l = (Tn N [A] <n) U {a U b :  a E Tn n [A] n A b E T a }  is 

the desired s ta t ionary  subtree of Tn: Fix a E Tn+l n [A] n and B E [Tn+la]. Then  

c l f ( a U B )  N m i n B  = U~EBClf (aU ( B A r ) )  n m i n B  C U ~ E B g a ( B N f )  C hn(a). 

Now set T* = nn<~o Tn, a s ta t ionary subtree of T, and h = Un<~ hn: T* -+ A. 

Then C = {3' < A : cl $3' = 3' AVa E T* N [3`]<~(h(a) < 3` A 3` E l imsucT. (a ) )}  

contains a club set. Fix 3' E S ~ ' R C  with c~ = {% : n < w} C C. Take 

inductively B = {fn  : n < co} E [T*] so that  3'n < f n  < 3'~+1 by %+1 E C and 

the inductive hypothesis  {f i  : i < n} E T* N [3'n] <~. Then  cl S B is as desired: 

First  we have sup cl$ B = 3", since sup B = 3' and cl$ B C cl$ 3' = 3' by 3' E C. 

Next m i n ( c l / B  - 3`n) = ~ ,  since c15 B N fin C hn(B N fin) = h(B n ~n) < 3 ,̀~ by 

% E C and B N fin E T* N [3'~]<~o. 1 

The  following lemma is due to Foreman-Magidor  [FM], who introduce the 

not ion of mutual  s ta t ionar i ty  and show tha t  the club filter on 7)~ A is not A cf)'- 

sa tura ted  when A is singular. 

Let cf A = w and {An : n < co} = { ~  : i < co} C A an unbounded  set of regular 

cardinals > ~ such tha t  An < An+l and {i < co : ~i = An} is infinite for any 

n < co. Let W be the tree Um<~ YIi<m ~i ordered by inclusion. For a subtree T 

of W set [T] = {B E I ] /<~  ~i : Vm < co(B]m E T)}, the set of infinite branches 

th rough  T, and SUCT(S) = {c~ : 8 * (c~) E T}, the set of immediate  successors of 

s E T .  

MAIN LEMMA 2: Let Sn C S ~° be stationary for n < co. Then 

• p . A  : Vn < co(sup(  n An) • Sn)} 

is stationary. 

Proo~ Fix f :  A <~ ~ P~A. We build inductively a subtree Tn of W so tha t  

Tr,+X C Tn, sup(cls r a n B  O An- l )  • Sn-1 for any B • ITs], and for any s • T~, 

SUCT, (s) is a singleton if al~l < An, and is unbounded in al~l otherwise. 
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First  set To = W. Next  suppose tha t  Tn is defined. For "7 < An we call a subt ree  

U ~ 0 of W cobounded below ~, if for any s c U, sucv(s)  is ~lsl if ~lsl < An, 

and is cobounded in 3' (resp. nl.~l ) if ~lsl = An (resp. ~lsl > An). We claim 

tha t  C = {~/< An : VU cobounded below 73B E [Tn]n [U](clf r a n B  n A,~ C "y)} 

contains a club set. 

Suppose  to the cont rary  tha t  we have a s ta t ionary  set S C A and for 7 E S 

a subt ree  U~ of W cobounded below 7 with clf r a n B  N An ~ "~ for any B C 

[T~] n [UT]. Build inductively a subtree T of Tn so tha t  SUET(8 ) is SUCTn(8) if 

~lsl -< An, and is {c~} with s * ((~) e N{U7 : s e UT} otherwise. Note t ha t  

the m a p  s ~-~ s]{i : ~/ = An} is injective on {s • T : ~lsl = An}. Hence D = 

{'~ < An :Vs  • T((~ls[ -- An A s " { / :  I~ i : An} C ~[) ~ ( c l f r a n s n  An C 7 A 7  • 

I imsucT(s ) ) )}  contains a club set. Fix 7 • S A D .  Take inductively B • [T]N[U~] 

as follows: Suppose tha t  s • T n U, is defined. Then  SUCT(S) n SUCu~(s) ¢ 0, 

since sucu~(s) = ~1~' when ~l~l < An, since sucu~(s) is cobounded in 3' and 

sucT(s)  is unbounded  in 3' by 7 • D, s • T and s"{i  : ~i = An} C 7 when 

~1.~1 -- An, and by s • U~ and the choice of SUCT(S) when ~1~1 > An. Thus  

c l f r a n B n A n  = U { c l f B " i n A n  : ~ = An} C 7 b Y 7  • D and B]i • T. This  

contradic ts  cl] ran B n An ~ "y by "), • S and the choice of U~. 

Fix 3' • Sn N C .  Set T* -- {s • Tn : Vt <_ sYU ~ t cobounded below 

73B • [Tn]N[U](t C B A c l s r a n B n A n  C 7)}, a subtree of Tn. Note tha t  

0 • T* by 7 • C. Fix s • T*. We claim tha t  sucT* (S) is a singleton if ~1~1 < An, 

and is unbounded  in 7 (resp. ~lsl) if ~1~1 = An (resp. ~l~l > A~). We show the 

case nl~ I = An. The  case ~l~l > An (resp. ~1~1 < An) is given by a similar (resp. 

simpler)  a rgument .  

Suppose  to the cont rary  tha t  A = 7 - SUCT. (s) is cobounded.  Then  for a • A 

we have a subt ree  U~ ~ s* (a} of W cobounded below 9' such tha t  clf ran BNAn 

7 for a n y s * ( a >  C B • [TnlN[U~] b y s  • T *  a n d s , ( a )  C T * .  F i x a s u b t r e e  

U of W cobounded below 7 with {t • U :  s < t} = U~eA{t • U~: s*  (a> < t}. 

Take s C B • [Tn] n [U] with clf ran B N An C 7 by s • T*, and then  a • A with 

s*<a) C B • [U~] by the minimal  choice of U. This  contradicts  c l / r a n B N A n  ~ 3' 

by s * (a)  C B • [Tn] N [U~] and the choice of U~. 

Now fix an unbounded  set {7/ :  i < w} C 3'. Build inductively a subt ree  Tn+l 

of T* so t ha t  SUCT~+, (s) is SUCT* (8) if ~lsl # A~, and is {a} with 7m < a < 7 

otherwise,  where m = I{i < Isl : ni = An}l. Then  Tn+l is as desired: Fix 

B • [Tn+l]. Then  s u p ( c l / r a n B  n An) = 7, since sup{B(/ )  : ni = A,~} = 7 and 

elf  ran B n An = Ui<~ clf B"i  n An C 3' by Bli • T*. 

Final ly  n n < ~  Tn has a unique branch B and sup(cl l  ran B N An) • Sn for any 
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rt < co as desired. I 

We are ready to prove the main result of this paper:  

THEOREM 1: 7)~A splits into A °~ stationary sets. 

Proof." When  A < #~o for some regular cardinal ~ < # < A, fix a club guessing 
c o  t~ sequence (c-~ : 7 E St, ) with cv = {7~ : n < w} and split Sj, into s ta t ionary  sets 

{S( : ~ < tL}. Then  f o r p : w - - + I , ,  {z E'P~A : 3 7 E S ~ ( s u p ( z N # )  - - " T A V n  < 

c o ( m i n ( z -  7n) E Sp(,0))} is s ta t ionary by Main Lemma 1, and mutual ly  disjoint. 

W h e n  cf k = co, fix an unbounded set {A,, : n < w} C A of regular cardinals 

> ~;. Then  I[In<~o Anl = A ~°. For n < w split S"~an into s ta t ionary  sets {Sn~ : 

< A,~}. Then  for p E I-In<~o An, {z E 5o~A: vn  < w(sup(z n A~) E Snp(n))} is 

s ta t ionary  by Main Lemma 2, and mutual ly  disjoint. 

Otherwise we have w < cfA < k and c2 ° < A for any oe < A, and hence 

A~ = A. For completeness we provide a proof implicit in [T1]. First we claim 

that  {z E 7~A : sup(z  n I~) E S A sup(z  N re) E S'} is s ta t ionary for any regular 
¢ 0  cardinals ~ _< # < t, < A and s ta t ionary sets S C St, and S '  C S j .  Fix 

$: ~<~ --+ P,~A. Take /3 E S '  with cl s/3 N t, = /3, and an unbounded  set b C /3 

of size co, and then ct E S with c1$(c~ U b) O # = c~, and an unbounded set a C (~ 

of size co. Then  sup(cls(a  U b) n #) = c~ and sup(cls(a  U b) O t,) = / 3  as desired. 

Now set # = max{co, cf A} < A and split S~ into s ta t ionary sets {S~ : .~ < cf A}. 

Also fix an unbounded  set {A~ : ~ < cf A} C A of regular cardinals > # and for 

< efA split S~' e into s ta t ionary  sets {S~¢ : ~ < A~}. Then  for ({() E ~ < c f : ~  "\4, 

{x C P~A : s u p ( x N # )  E S~ Asup(xNA~) E S~¢} is s ta t ionary by the claim above, 

and mutual ly  disjoint. I 

Our  second result is inspired by Burke's  theorem [BMat] tha t  the club filter 

on P,~A is not  k+-sa tura ted  when ~ > wl and cf A < n: 

THEOREM 2: ~°,~A splits into A + stationary sets when cfA < ~. 

Proof: The case cf A = co follows from Theorem 1. 

Otherwise fix a scale {f-~ : 7 < k+} c [I~<~f:~ Ae with A0 > ~. Define p: P,~A -+ 

k + by p(z) = min{7 < A + : (sup(z N A~) : ( < erA) <_* f,y}. We show tha t  p - i S  

is s ta t ionary  in ;°~k for any s ta t ionary set S C S~+. 

Fix a club set C C 7)~A. Const ruct  {z~ : a E [A+] <~°} C C by induct ion on lal 
so tha t  ranfm~×a C z= C z b  for a n y a C  b E  [k+] <'° b y c f A  < ~. T a k e T E  S 

with p(z~) < 7 for any a E [~,]<~o and an unbounded  set B C 7 of order type  w. 

Set z = UOE~ Z~nO E C. We claim tha t  p(z) = 7 as desired. 
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Firs t  we have p(x) _> 7, since for any t3 E B, p(x) >_ p(XBnfl) >_ m a x ( B  ;3/3) 

by ran fmax(BnZ) C xBn~. Next 

(sup(x N A~) : ~ < cf)~) = (supzeB sup(xBnZ Cl )~() : ~ < cfA) <* f~, 

since cfA > co and for any /3 E B, (sup(xBn~ NA()  : ~ < cf,k) <* f7 by 

p( X Bnfl ) "( "7. 

Now split  S~+ into s ta t ionary  sets {S~ : a < A+}. Then  for a < A +, p- lSa  is 

s t a t iona ry  in T',~)~ by the claim above, and mutual ly  disjoint. I 

3. S o m e  r e m a r k s  

For the  m o m e n t  let us assume tha t  # < n < A are all regular  and consider the  

s t a t i ona ry  set S ~  -- {x E 7~A : c f s u p x  = #}. Main L e m m a  1 implies t ha t  S ~  

splits into , ~  s ta t ionary  sets. On the other  hand M a t s u b a r a  [Mat] proved tha t  

a s t a t iona ry  subset  of S ~  splits into A s ta t ionary  sets. This  is op t imal  when 

# > w and .k < n +"~, since B a u m g a r t n e r  [B] shows tha t  [{x E P,~A : n < Vu <__ 

,k(efsup(x N u) > w)} A C I = )~ for some club set C C P ~ .  In fact the m a p  

x ~ (sup(x N u) : n < u < ,~) is injeetive on this set. Complement ing  a result  

of Abe  [A], we remark  t ha t  the m a p  x ~ sup x is not injeetive on $2:~ fl C for 

any club set C C P~,~: Fix f : ,~<,o __+ ;o)~ generat ing C. Take n < 3` ~ $2 

closed under  f ,  an unbounded  set a C 3` of size # and a E 3' - el), a. Then  

el S a ¢ c l ] ( a  U {a})  and supe l  S a = s u p c l s ( a  U {a}) = 3" as desired. 

T h e  rest of the section is devoted to a detailed proof  of the D o n d e r - M a t e t  

t heorem ment ioned  earlier. 

Let  # > co be regular  and d 7 = {3"n : n < co} C 3" unbounded for 3' E St,. 

T h e  following l e m m a  from [B] (see also [BT]), where it is s ta ted  in (harmlessly)  

inaccura te  form, is implicit  in L e m m a  9.1 of [DM]. 

LEMMA 1: Let S C S~ be stationary. Then {a < # : {3" C S : a C dT} is 

stationary} is unbounded. 

Proo~ Suppose  to the  cont rary  tha t  we have/3  < # and for/3 < a < # a club 

set C~ C p with C~ rn {3` C S : a C dT} = 0. Take fl < 3' C SOl A ~ < ~ < , C ~ .  T h e n  

for any /3  < a < 3', a ¢ d 7 by 3' E S VI C~. This  contradicts  the unboundedness  

of d~ in 3'. I 

We call a subt ree  T ¢ 0 of [#]<~ in the sense of Section 2 unbounded  (resp. 

cobounded)  if sueT(a)  is unbounded  (resp. eobounded)  in t~ for any a e T.  T h e  

following l e m m a  from [RS] (see also [BMag]) would ensure tha t  the m a p  ( in 

L e m m a  9.2 of [DM] is well-defined (at least in the ease we are interested in). 
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LEMMA 2: Let  g: T -+ 1., with T an unbounded subtree of  [#]<"~ and v ~ < #. 

Then  for some  unbounded  subtree T* of  T,  g is constant on T* f~ [#In for any  

n < w .  

Proof:  For h : w - +  ~,set f h  = {a E T : V b  < a(g(b) = h(IbI))} , a s u b t r e e o f T .  

First  we find h :  w --~ v with [Th] M [U] ¢ 0 for any cobounded subtree U of [#]<~. 

Suppose to the contrary  tha t  for h : a; ~ u we have a cobounded subtree Uh 

of [#]<4. with [Th] N [Uh] = 0. Take inductively B E [T] N [N{Uh : h :  w --+ ~,}] by 

~,~ < #. Take h: w --+ v with B E [Th]. This contradicts [Th] N [Uh] = O. 

Now fix h: w --+ u as above. Set T* = {a E Th :Vb < aVU ~ b c o b o u n d e d  

3 B  E [Th] M [U](b C B)}, a subtree of T. Note tha t  0 E T* by the choice of h. 

We claim tha t  T* is unbounded  as desired. 

Suppose to the contrary  that  A = # - SUCT* (a) is cobounded for some a E T*. 

Then  for a E A we have a cobounded shbtree Us 9 a U {a} of [~]<~ such tha t  

a U { a }  ~ B for any B E [Th]A[U~] by a E T* and a U { a }  ¢ T*. Fix a cobounded  

subtree U of [#1<~ with {b E U :  a < b} = U~EA{b E Us : a U  {a} _< b}. Take 

a C B E [Th]N[U] by a E T*, and then a E A wi th  a U { a }  c B E [Us] by the  

minimal choice of U. This contradicts a U {a} ~ B by B E [Th] A [Us] and the 

choice of Us. I 

We are ready to prove the main claim of Proposi t ion 9.6 of [DM]: 

THEOREM: Let  A > 2<% Then there is a sequence (vx : x E P~A> such that  

{x  E 7~A : vx = X (-1 x}  is stationary for any X C A. 

Proof: Set # = (2<~) + and split S~ into s ta t ionary sets { S  w : w E P~n}.  For 

x E T'~A with c f sup(x  M #) = w set v~ = ~r(x)-lw, where sup(x M #) E S ~ 

and 7c(x): x -+ o t x  is the increasing bijection. Fix X C A. We show tha t  

{x E P~A : v ,  = X N z} is stationary. 

Fix f :  A <~ --~ P~A. We build inductively an unbounded  subtree T of [#]<~' and 

for a E T a s ta t ionary  set S~ C S~' and an increasing injection X~: clf a --~ t~ so 

tha t  for any a < b E T,  S b C S a and for any "), E S~, a C d- r and 7r(cl/d~) I e l / a  = 

X~. Note tha t  X~ C Xb for any a _< b E T. 

First  set SO = S~ and X0 = 0. Next suppose tha t  TN[#] ~ and S~ for a E Tn[/~] n 

are defined. Fix a E T n [#]~. Let 

sueT(a) = {a  < i t :  m a x a  < a A {7 E S~:  a E d~} is s ta t ionary},  

which is unbounded  by Lemma 1. Fix a E SUeT(a). Take a s ta t ionary  set 

S~u{~} C {7 E S~ : a E d-r} and X~u{M : cly(a W {a}) --~ ~ so tha t  for any 

3' E S~u{a}, 7r(cl S d~)[ c l l (a  U {a}) = X~u{a} by 2 <'~ < #. 
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By L e m m a  2 with v = 2 <~ take an unbounded subtree T* of T and 

{y,~ : n < co}, {zn : n < w} C ; o a  so tha t  ranx~  = y~ and Xa"(X n c l l a )  = zn 

for any a E T* VI [It]~. Then  

C = {3, < # :  cl/3,rh # = 3,AVa E T* r~ [3,]<~(3, E l imsucT. (a))} 

contains a club set. Set w = ~r(U~< ~ y~)" U~<~ z~ E 7).~. Fix 7 E S ~ n C. Take 

inductively B = {/3n : n < w} E [T*] so that  % < ~ < 3, by 3, E C and the 

inductive hypothesis  {fli : i < n} E T* N [3,] <~. Then  c l / B  is as desired: First  

we have sup(cl I B N It) = 3', since sup B = 3" and cl s B N p C clf 3, n It = 3, by 

3' E C. Next zr(cl$ B ) " ( X N c l f  B) = w, since X = U~EB XBn~: clf B -+ Un<~ yn 

is an increasing bijection and X"(X gl clf B) = U~<~o z~ by the note above. | 
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