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ABSTRACT
Let k£ > w be a regular cardinal and A > & a cardinal. We show that P,
splits into A“ stationary sets.

0. Introduction

Let £ > w be a regular cardinal and A > & a cardinal. Solovay’s classical result
for x [So] led Menas [Me] to conjecture that a stationary subset of P,A would
split into A<* stationary sets. Unfortunately his conjecture fails when 2<% > x*:
While P.k* carries a stationary set of size 1 (see [BT]), the conjecture implies
that the size is (k1)<" as well.

What about splitting a stationary set S into min{|S N C|: C is club} many
sets? Gitik’s answer [G] was again negative: Relative to supercompactness, it is
consistent that some stationary subset of P.x* splits into at most x stationary
sets.

Now it seems natural to ask the same question as above for a canonical sta-
tionary set. Let us concentrate on the case where the canonical set is P itself.
When k = w;, we have a satisfactory answer by the works of Baumgartner—
Taylor [BT] (the case A < 2¥) and Donder-Matet [DM] (otherwise): P, A splits
into A“ stationary sets. In fact the latter proved the diamond principle for P, A
when A > 2<%,
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of the Japanese Overseas Research Fellows. He gratefully acknowledges Professor
Akihiro Kanamori’s hospitality. He also wishes to thank members of the set theory
seminar at Waseda University for their interest at the early stage.
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In this paper we are mainly concerned with the general type of result as follows
(see [Ka]): P.A splits into A stationary sets. As suggested above, we should
first measure the minimum size of a club subset of P A. Elaborating his earlier
result [BT), Baumgartner [B] has already shown that it is at least A. This and
the following result of Magidor [Mag] imply that A“ is the critical number for
our specific splitting problem: If there is no w;-Erdés cardinal in the Dodd-
Jensen core model, P A carries a club set of size A when c¢f A > «, and of size
max{\*, A\*} otherwise.

Unifying three of the results above, we establish the desired splitting:
THEOREM 1: P, splits into A“ stationary sets.
We also realize the splitting suggested in the latter case of Magidor’s theorem:

THEOREM 2: P\ splits into A* stationary sets when cf A < k.

1. Preliminaries

Our notation should be standard. Kanamori’s book [Ka] is an excellent source
for background material. We reserve k for a regular cardinal > w, A for a cardinal
> k and p, v for a cardinal > w. When p < & is regular, S¥ (resp. SSH, S2#)
denotes the set of limit ordinals < x of cofinality u (resp. < p, > p). For a set
X of ordinals let lim X be the set {y < supX : sup(X N~v) =~ > 0} of limit
points of X and cly X the closure of X under f : A<* — P, A, i.e. the minimal
set Y O X with |J f“Y<* C Y. Unless otherwise stated, we understand that a
set of ordinals is listed in increasing order and a splitting of a stationary set is
mutually disjoint.

Thoughout the paper we freely use Solovay’s theorem [So] mentioned earlier:

THEOREM: A stationary subset of k splits into k stationary sets.

We need a version of Shelah’s club guessing sequence {see [Ko}). Let us sketch
a proof due to Hirata [H]:

THEOREM: Let u < k < A be all regular and S C S5 Nlim Sf" stationary. Then
there is a sequence (¢, : v € S) such that ¢, C S;" is unbounded in v and of
order type p for any v € S and {y € S : ¢y C C} is stationary for any club set
CcCA

Proof: First for 8 € lim A fix an unbounded set dg C 8 of order type cf 3. For
v € S and a club set D C lim A set z2 =, ., =2, — {0}, where D, is defined
inductively by

5”5,0 ={sup(DNa):aed,}
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and
2D 1 = {sup(DNa): 36 € 2D, NS € dp)}.

Note that :z: C D since D is closed, and |$ | < £ by induction on n < w. First
we find a club set D C A such that {y € §: 22 C C} is stationary for any club
set C C A

Otherwise we would have inductively a descending sequence (C¢ : £ < &) of
club subsets of lim A such that Ceiy N {y € S : 25 C Ceq1} = 0 for any € < k.
Fix v € SN{\¢c, Ce. Then we have inductively {{, : n < w} C & such that
xgﬁn = :cgn for any {n < & < k, since the map & — sup(Ce¢ N ¢) is decreasing
for any a < A and !$7 | < & by the note above. Set £ =sup, ., &, < k. Then

258 = 256 ¢ Ce41 by the note above. This contradicts

CE+1ﬂ{’YES:£E$€ CC§+1} =0

Now fix a club set D C A as above. Then §* = {y € SNlimD : 2P C limD}
is stationary by the claim above. Fix 7 € S5*. We have a: - hm:v C S ,
since 8 € zP N ST" implies B € limz?, .| by 8 € lim D. Also b hmx$ is
unbounded in v, since a:,’?) o is unbounded in vy by v € lim D.

Finally we get the desired sequence by taking an unbounded subset of

T ,Y — hmx of order type u as ¢, for v € 5*. |

In fact we use only the sequence of the form (c, : v € §¢) and do not appeal
to the clause ¢y C SAZ”. The second result we quote from Shelah’s pef theory is
a scale on a singular cardinal [Sh] (see also [BMag]):

THEOREM: Let A be singular. Then there are an unbounded set {\¢ : £ < cf A} C
A of regular cardinals and {f, : v < At} C e <ctn Ae such that fg <* f, for any
B <7y < A" and for any g € [ ¢y A¢ there is ¥ < At with g <* f,.

Here <* denotes the eventual dominance: f <* g iff {{ < cf X: f(£) < g(¢)}
is cobounded. The later development of the theory as presented in [Ko] yields a
more transparent proof of this deep result.

2. Main theorems

This section is devoted to establishing Theorems 1 and 2.

Our proof of Theorem 1 consists of two major parts. For the first part we are
strongly indebted to Todorcevi¢ [T2], who reproved Gitik’s answer [G] to Abra-
ham’s question [AS| and claimed that his method would yield the Baumgartner—
Taylor result as well via the following: Let (¢, : v € S%,) be a club guessing
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sequence with ¢, = {v, : n <w}. Then {z € P,,w;: Iy € S (supz =y A {n <
w: N (Vo1 — n) # 0} = r)} is stationary for any r € [w]“.

Let A be regular. We endow [A]<“ with the tree ordering < = {(a,b) : a is an
initial segment of b}. Let T be a subtree of [A\|<“, L.e. a subset of [\]<“ closed
under initial segments. Set [T] = {B € [A\]¥ : V8 € B(BN G € T)}, the set of
infinite branches through 7', and T¢ = {b € [A\|*¥ : a < aUb € T}, the tree
above a € [A]<¥. We call T # 0 stationary if the set of immediate successors of
a €T, sucr(a) ={a<X:a<aU{a} e T} is always stationary, and g: T — X
regressive when g(a) < g(b) € minbU {0} for any a <be T.

Let us start with a tree version of the regressive function lemma:

LEMMA: Let g : T — X be regressive with T a stationary subtree of [S§]<¥.
Then for some stationary subtree T* of T', g“T™* is bounded in A.

Proof: For v < Aset T, = {a € T : g(a) < 7}, a subtree of T' by order
preservation of g. First we find v < A with [T,] N [C]“ # @ for any club set
CccA

Suppose to the contrary that for v < A we have a club set C, C X with
[Ty] N [Cy]¢ = 0. Take inductively B € [T] N [A,<2C,]¢ by the stationarity of
T. Take a < min B with B € [T,] by cf min B = k > w and the regressiveness of
g- Then B € [C,]* by B € [Ay<AC,]*. This contradicts [T,] N [Cy]* = 0 by the
choice of C,,.

Fix v < X as above. Set T* = {a € T, : Vb < a¥C C X club ([T,°]n[C]* # 0)},
a subtree of T. Note that § € T* by the choice of v. We claim that T™* is
stationary as desired.

Suppose to the contrary that D Nsucys{(a) = @ for some a € T* and some club
set D C X. Then for o € D we have a club set C, C A with [1,2{#N[Cy)% = 0
by a € T* and aU {a} € T*. Thus C = DN AyepCq is club in A. Teke B €
[T,%]N[C]* by a € T*. Set 8 = min B. Then B — {8} € [T,**¥}] by B € [T,,%],
and B — {#} € [C4]” by B € [C]“. This contradicts [T,**#}] N [Cpl¥ = 0 by
B € D and the choice of Cp. |

For the following lemma we fix a club guessing sequence (c, : v € SY) with
y ={Wm:n <w}.

MAIN LEMMA 1: Let S, C S§ be stationary for n < w. Then
{z € PA: Iy € S (supz =y AVn < w(min{z — v,) € S,))}

is stationary.
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Proof: Fix f: A< — P.). Set
T = {a : Vn < [a|(the nth element of a is in S,)},

a stationary subtree of [S§]<“. We build inductively a stationary subtree T,
of T and hy: T, N [A]" = A so that Tyq1 C Ty, Tny1 N[A* = T, N [A]™ and
cly(aU B) Nmin B C hy(a) for any a € T,y N{A]® and B € [T,11°].

First set Ty = T. Next suppose that T, is defined. Fix a € T,, N [A]". Then
the map g, : b — sup(clf(a Ub) N minbd) is regressive on T,,* by cfminb = k.
By the lemma above we have a stationary subtree T, of T,,* and hy(a) < A with
90Ty C hp(a). Then Tppy = (T, NA<")U{aUb:a e T, NA"AbET,}is
the desired stationary subtree of T,,: Fix a € T5, 41 N [A]"* and B € [T,11°]. Then
clf(aU B) Nmin B = {Jgep cly(aU(BNB)) Nmin B C Ugep go(BNB) C hnla).

Now set T* =1, ., T, a stationary subtree of T, and h = {J,, ., hn: T* —= A.
Then C = {y < A:clyy=7vAVa e T* N [y]<“(h(a) < ¥y A~y € limsucr-(a))}
contains a club set. Fix y € S NC with ¢, = {7, : n < w} C C. Take
inductively B = {f, : n < w} € [T*] so that v, < Bn < Yni1 by Tny1 € C and
the inductive hypothesis {f; : i < n} € T* N [y,]<“. Then cly B is as desired:
First we have supcly B = v, since supB =y and cly B Cclyy =7y by vy € C.
Next min(cly B —7,) = B,, since clf BN B, C h,(BNB,) = h(BNB,) < v, by
Yo € C and BN By, € T* 0 [yn]<“. ]

The following lemma is due to Foreman-Magidor [FM], who introduce the
notion of mutual stationarity and show that the club filter on P, A is not A\f*-
saturated when X is singular.

Let cf A = w and {A, : n < w} = {k; : t <w} C A an unbounded set of regular
cardinals > x such that A\, < Ap41 and {i < w : k; = A,} is infinite for any
n <w. Let W be the tree |J,, ., [];<.m, #: ordered by inclusion. For a subtree T
of W set [T] = {B €[], %i : Ym < w(B|m € T)}, the set of infinite branches
through T', and sucy(s) = {& : s x (@) € T}, the set of immediate successors of
seT.

MaAIN LEMMA 2: Let S, C SY_ be stationary for n < w. Then
{z € P :Vn <w(sup(z N A,) € Sn)}

is stationary.

Proof:  Fix f: A% — P,A. We build inductively a subtree T,, of W so that
Tnt1 C Ty, sup(clyran BN Ap_y) € Sy for any B € [T,,], and for any s € Ty,
sucr, (s) is a singleton if Kis| < An, and is unbounded in ks otherwise.
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First set To = W. Next suppose that T,, is defined. For v < A, we call a subtree
U # 0 of W cobounded below v if for any s € U, sucy(s) is k) if k5] < Ap,
and is cobounded in 7y (resp. K4) if k|5 = An (resp. K5 > An). We claim
that C' = {y < A, : YU cobounded below v3B € [T,,] N [U](clfran BN A, C v)}
contains a club set.

Suppose to the contrary that we have a stationary set S C A and for y € S
a subtree Uy of W cobounded below v with clyran BN A, ¢ «y for any B €
[T%] N [U,]- Build inductively a subtree T of T, so that sucp(s) is sucy, (s) if
Kisj < An, and is {a} with s x (@) € {U, : s € U,} otherwise. Note that
the map s = s|{{i : K; = A,} is injective on {s € T : k5 = Ap}. Hence D =
{y<An:VseT((ks) = AnAs{i: ki =X} Cv) = (clyransN A, CyYAy €
limsucy(s)))} contains a club set. Fix y € SND. Take inductively B € [T|N[U,]
as follows: Suppose that s € T N U, is defined. Then sucy(s) Nsucy, (s) # 0,
since sucy, (s) = Kjs) when K5 < Ay, since sucy, (s) is cobounded in v and
sucy(s) is unbounded in ¥ by v € D, s € T and s“{i : kK; = Ay} C ¥ when
Kis| = An, and by s € U, and the choice of sucr(s) when k) > An. Thus
clyran BN A, = J{cly BN A, ks = Ag} Cybyy€ D and Bli € T. This
contradicts clfran BN A, ¢ v by v € S and the choice of U,,.

Fix vy € S, NC. Set T* = {s € T,, : ¥t < sVYU 3 t cobounded below
v3dB € [T, N [U)(t € BAclfranBN A, C v)}, a subtree of T,,. Note that
@€ T* by v € C. Fix s € T*. We claim that sucr«(s) is a singleton if k5| < Aq,
and is unbounded in 7y (resp. kjs|) if K5 = An (resp. kg > An). We show the
case Kis| = An. The case k|5 > A, (resp. K|g < An) is given by a similar (resp.
simpler) argument.

Suppose to the contrary that A = v — sucp«(s) is cobounded. Then for a € A
we have a subtree U, 3 sx{a) of W cobounded below -y such that cly ran BNA, ¢
v for any s* (o) C B € [T,]N{U,] by s € T* and s * (&) € T*. Fix a subtree
U of W cobounded below v with {t € U : s <t} = calt € Us: 8 % (@) < t}.
Take s C B € [T,]N[U] with clgran BN A, C v by s € T*, and then o € A with
sx{a) C B € [U,] by the minimal choice of U. This contradicts clf ran BN, ¢ v
by s * (@) C B € [T,,] N [U,] and the choice of U,.

Now fix an unbounded set {; : ¢ < w} C «y. Build inductively a subtree T;, 4y
of T* so that sucy, ., (s) is sucy-(s) if k|5 # An, and is {a} with vm < o <y
otherwise, where m = |{i < |s| : k; = An}]. Then Tp41 is as desired: Fix
B € [Tny1). Then sup(clyran BN A,) = v, since sup{B(i) : k; = Ap} = v and
clyran BN Ay = U, ¢l BN A, Cy by Bli € T*.

Finally N T, has a unique branch B and sup(clyran BN A,) € S, for any

n<w
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n < w as desired. |

We are ready to prove the main result of this paper:
THEOREM 1: P, splits into A¥ stationary sets.

Proof: When X < ¥ for some regular cardinal k < u < A, fix a club guessing
sequence (cy : 7y € S) with ¢y = {7, : n <w} and split S} into stationary sets
{Se : £ < pu}. Then for p:w — p, {x € PeA: Iy € S(sup(zNp) =7AVn <
w(min(z —v,) € Sp(ny))} is stationary by Main Lemma 1, and mutually disjoint.

When cf A = w, fix an unbounded set {A, : n < w} C A of regular cardinals
> k. Then |[[,c, Al = A, For n < w split S{ into stationary sets {Sn¢ :
£ < A}, Then for p € [T,c, A, {2 € Ped : Vn < w(sup(z N ) € Sppn))} is
stationary by Main Lemma 2, and mutually disjoint.

Otherwise we have w < ¢fA < X and o < A for any @ < A, and hence
A = A. For completeness we provide a proof implicit in [T1]. First we claim
that {x € P.A :sup(z Np) € S Asup(x Nr) € S'} is stationary for any regular
cardinals k < g < v < A and stationary sets S C S; and &' C S. Fix
[ A<® = P Take 8 € S’ with clf 8N v = 3, and an unbounded set b C (3
of size w, and then o € § with cly{@ U b) N ¢ = a, and an unbounded set a C &
of size w. Then sup(cly(aUb) N p) = a and sup(clf(a Ub) Nv) = B as desired.
Now set p = max{x,cf A} < A and split S into stationary sets {S¢ : { < cf A}
Also fix an unbounded set {A¢ : € < c¢f A} C A of regular cardinals > p and for
& < cf A split Sfﬁ into stationary sets {Sge : ¢ < A¢}. Then for (£C) € Zg«m Ae,
{z € P.X:sup(xNp) € Se Asup(zNAg) € Sec} is stationary by the claim above,
and mutually disjoint. n

Our second result is inspired by Burke’s theorem [BMat] that the club filter
on P A is not AT-saturated when « > w; and cf X < &:

THEOREM 2: P. ) splits into At stationary sets when cf A < k.

Proof: The case ¢f A = w follows from Theorem 1.

Otherwise fix a scale { f, : v < At} C [l 55 Ac With Ag > k. Define p: P —
Mt by p(z) = min{y < AT : (sup(z N Ae) : € < cfA) <* f,}. We show that p~1S
is stationary in P, for any stationary set S C S¢.

Fix a club set C C P, A. Construct {z, : a € [A*]<“} C C by induction on |a]
so that ran fraxa C o C 2p for any a C b € A\T]<“ by ¢f A < k. Takey € S
with p(z,) < v for any a € [y]<¥, and an unbounded set B C « of order type w.
Set © = Ugep Tnng € C. We claim that p(z) = 7 as desired.
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First we have p(z) > v, since for any 8 € B, p(z) > p(zprg) > max(B N f§)
by ran fnax(Bng) C TBng- Next

(sup(z N A¢) : € < cf A) = (supgepsup(epng N A¢) : £ <cfX) <* f,

since ¢cfA > w and for any 8 € B, (sup(zpng N A¢) : € < cfA) <* f, by
p(@Brg) <.

Now split Sy, into stationary sets {S, : & < A*}. Then for & < A*, p715, is
stationary in P.A by the claim above, and mutually disjoint. 1

3. Some remarks

For the moment let us assume that g < & < A are all regular and consider the
stationary set S¥, = {& € PcA : cfsupz = p}. Main Lemma 1 implies that S%,
splits into A stationary sets. On the other hand Matsubara [Mat] proved that
a stationary subset of S¥, splits into A stationary sets. This is optimal when
i > w and A < k1) since Baumgartner [B| shows that [{z € P, : & < Vv <
Aefsup(z Nv) > w)} NC| = A for some club set C C PcA. In fact the map
z > (sup(z Nv) : k < v < A) is injective on this set. Complementing a result
of Abe [A], we remark that the map z — supz is not injective on S¥, N C for
any club set C C P.A: Fix f : A<¥ — P, generating C. Take k < v € S§
closed under f, an unbounded set @ C -y of size p and o € v — clga. Then
clya # clf(aU {a}) and supcly a = supcls(a U {a}) =7 as desired.

The rest of the section is devoted to a detailed proof of the Donder-Matet
theorem mentioned earlier.

Let 4 > w be regular and d, = {7, : n < w} C v unbounded for v € S.
The following lemma from (B] (see also [BT]), where it is stated in (harmlessly)
inaccurate form, is implicit in Lemma 9.1 of [DM].

LEMMA 1: Let S C S be stationary. Then {a < p:{y € S:a € dy}is
stationary} is unbounded.

Proof: Suppose to the contrary that we have § < u and for § < o < g a club
set Co C pwithCon{ye S:aecdy} =0 Take f <y € SNAgcacuCa- Then
for any 8 < a <7, a €d, by v € SN C,. This contradicts the unboundedness
of d, in 7. 1

We call a subtree T # 0 of [u]<“ in the sense of Section 2 unbounded (resp.
cobounded) if sucr{a) is unbounded {resp. cobounded} in p for any a € T. The
following lemma from [RS] (see also [BMag]) would ensure that the map £ in
Lemma 9.2 of [DM] is well-defined (at least in the case we are interested in).
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LEMMA 2: Let g: T — v with T an unbounded subtree of [u]<“ and v* < p.
Then for some unbounded subtree T* of T, g is constant on T™ N [u]™ for any
n<uw.

Proof: For h: w — v set T, = {a € T: Vb < a(g(d) = h(]d]}))}, a subtree of T.
First we find h : w — v with [T3]N[U] # @ for any cobounded subtree U of [u]<*.

Suppose to the contrary that for h : w — v we have a cobounded subtree Uj,
of [u]<“ with [T) N [Us] = 0. Take inductively B € [T]N{W{Up : h:w — v}] by
v < p. Take h: w — v with B € [T]. This contradicts [T] N [Ux] = 0.

Now fix h: w — v as above. Set T* = {a € T}, : Vb < aVU 3 b cobounded
AB € [Tu) N [U](b C B)}, a subtree of T. Note that ¢ € T by the choice of h.
We claim that 7™ is unbounded as desired.

Suppose to the contrary that A = p - sucr-(a) is cobounded for some a € T™*.
Then for ¢ € A we have a cobounded subtree U, 3 a U {a} of [4]<¥ such that
aU{a} ¢ Bforany B € [Ty|N[U,) by a € T* and aU{a} ¢ T*. Fix a cobounded
subtree U of [1]<* with {b € U :a < b} = J,cs{b € Us : aU{a} < b}. Take
a C B € [Ty]N[U] by a € T*, and then a € A with aU {a} C B € [U,] by the
minimal choice of U. This contradicts a U {a} ¢ B by B € [T] N [Uy] and the
choice of U,. |

We are ready to prove the main claim of Proposition 9.6 of [DM]:

THEOREM: Let A > 2<%. Then there is a sequence (v, : © € P,A) such that
{z € PuA v, = X Nz} is stationary for any X C A.

Proof: Set p = (2<*)* and split S/ into stationary sets {S* : w € Pyx}. For
z € P with cfsup(z N p) = w set v, = w(z)"'w, where sup(z Nu) € S*
and w(z): x — otz is the increasing bijection. Fix X C A. We show that
{z € P.A: vy = X Nz} is stationary.

Fix f: A<* — P.A. We build inductively an unbounded subtree T of [1]<“ and
for a € T a stationary set S, C S); and an increasing injection x,: clya — &k so
that for any a < b€ T, S, C S, and for any v € S,, a C dy and 7(cly dy)|clfa =
Xa- Note that x, C xp forany a <beT.

First set Sp = S/ and xp = 0. Next suppose that TN[u]" and S, fora € TN[u|"
are defined. Fix a € T'N [p]*. Let

sucr(a) = {a < p:maxa < aA{y €S, :acd,} is stationary},

which is unbounded by Lemma 1. Fix a € sucr(a). Take a stationary set
Saufa} C {7 € Sa : @ € d,} and X,ua) : clf(aU {a}) = & so that for any
¥ € Sauga}, T(cly dy)lclg(aU {a}) = xaugay by 2% < p.
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By Lemma 2 with v = 2<% take an unbounded subtree T* of T and
{yn :n <w}, {zn :n < w} C Puk so that ranx, = yn and x.“(X Neclya) = 2z,
for any a € T* N {pu|®. Then

C={y<p:cyynNp=vyAVaeT N}H<“(ye limsucr:(a))}

contains a club set. Set w = 7(|J, .., ¥n) “Upcw 2n € Pek. Fixy € SYNC. Take
inductively B = {8, : n < w} € [T*)] so that v, < B, < ¥ by v € C and the
inductive hypothesis {3; : © < n} € T* N [y]<“. Then cl; B is as desired: First
we have sup(cly BN p) = v, since supB =yand cly BNu CclgyNp = by
v € C. Next n(cly B)“(X Nely B) = w, since x = e g XBnp: clf B = Uncy Un

is an increasing bijection and x “(X Ncly B) = |J,, ., 2= by the note above. |
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